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Shape Constant Determination Visualizing Precision LossIntroduction

Effect of Shape Constant:

In Radial Basis Function (RBF) interpolation, Cross Validation techniques such as
Rippa's LOOCV are often used to determine the value of the shape parameter, 𝑐.

These Cross Validation techniques only require the points of the interpolant to
choose a value of 𝑐. Care must be taken, however, to ensure that any value of 𝑐
considered will provide a stable interpolant. The range of acceptable values of 𝑐
varies based on the type of basis function used, the number of points, their
spacing, and the machine precision used in calculation.

If greater machine precision is applied to interpolation, then the range of values
of 𝑐 that may potentially provide good results is larger. The value of 𝑐 ultimately
chosen will depend on the cost function used. We propose a novel method to
determine what range of c values should be examined when searching for a
suitable 𝑐. This method considers the interpolation points being used as well as
the available machine precision. The method works for both uniformly or non-
uniformly spaced points.

Catastrophic Loss Of Precision in Radial 

Basis Functions

As an example, consider the test function 𝑓 𝑥 = cos 𝑥 , we built interpolants 

by sampling this test function at {𝜋 − 1, 𝜋 −
1

2
, 𝜋, 𝜋 +

1

2
, 𝜋 + 1} using 𝑐 = .5

(left) and 𝑐 = 5 (right).  Here both interplants are plotted in blue, and the test 
function is plotted in yellow:

Background

Building RBF Interpolants

Given arbitrary interpolation points 𝐗 = 𝑥1 …𝑥𝑛 with known values            
Y= 𝑦1…𝑦𝑛 , we can determine the coefficients റ𝑎 = 𝑎1…𝑎𝑛 by solving the 
linear system:

𝑀𝑐 റ𝑎 = 𝒀
Here 𝑀𝑐 is a 𝑛 × 𝑛 Toeplitz matrix constructed from the interpolation points.
Here is an example for 𝑛 = 5 :

M𝑐 =

𝜙(|0|, 𝑐) 𝜙(|𝑥1 − 𝑥2|, 𝑐) 𝜙(|𝑥1 − 𝑥3|, 𝑐) 𝜙(|𝑥1 − 𝑥4|, 𝑐) 𝜙(|𝑥1 − 𝑥5|, 𝑐)

𝜙(|𝑥2 − 𝑥1|, 𝑐) 𝜙(|0|, 𝑐) 𝜙(|𝑥2 − 𝑥3|, 𝑐) 𝜙(|𝑥2 − 𝑥4|, 𝑐) 𝜙(|𝑥2 − 𝑥5|, 𝑐)

𝜙(|𝑥3 − 𝑥1|, 𝑐) 𝜙(|𝑥3 − 𝑥2|, 𝑐) 𝜙(|0|, 𝑐) 𝜙(|𝑥3 − 𝑥4|, 𝑐) 𝜙(|𝑥3 − 𝑥5|, 𝑐)

𝜙(|𝑥4 − 𝑥1|, 𝑐) 𝜙(|𝑥4 − 𝑥2|, 𝑐) 𝜙(|𝑥4 − 𝑥3|, 𝑐) 𝜙(|0|, 𝑐) 𝜙(|𝑥4 − 𝑥5|, 𝑐)

𝜙(|𝑥5 − 𝑥1|, 𝑐) 𝜙(|𝑥5 − 𝑥2|, 𝑐) 𝜙(|𝑥5 − 𝑥3|, 𝑐) 𝜙(|𝑥5 − 𝑥4|, 𝑐) 𝜙(|0|, 𝑐)

Since 𝜙 is a function of the squared norm of റ𝑥 ,the matrix is always positive
definite. Inverting this matrix yields the coefficients of the interpolant.

റ𝑎 = 𝑀𝑐
−1𝒀

Since 𝑀𝑐 depends on 𝑐, 𝑀𝑐
−1 and റ𝑎 also depend on 𝑐. For any given value of 𝑐

the interpolant built will pass through the designated points, but each
interpolant will have a different shape.
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Our Method: Precision Loss Metric

A Radial Basis Function (RBF) is a function of the form:
𝜙 𝑟, 𝑐 ∶ ℝ ⨯ℝ→ℝ

The following are a few examples of RBFs.

Typically, 𝑟 is the vector norm. These RBFs can be the basis for an interpolant:

𝐼 𝑿,𝒀,𝑐 റ𝑥 = 𝑎1𝜙 | റ𝑥 − 𝑥1|, 𝑐 + ⋯+ 𝑎𝑛𝜙 |𝑥 − 𝑥𝑛|, 𝑐

The 𝐗 = 𝑥1 …𝑥𝑛 are arbitrary interpolation points and 𝒀 = {𝑦1…𝑦𝑛} are the
corresponding function values at those points, 𝑐 is the shape parameter and റ𝑥 is
the point where the interpolant is being evaluated.

While all values of 𝑐 result in valid interpolants that pass through the
interpolation points, it is desirable to have a procedure for selecting 𝑐 based
on some criteria. This is done by defining a cost function ∁ 𝑋, 𝑌, 𝑐 , which is
then minimized. Perhaps, the most popular cost function is the Leave One
Out Cross Validation (LOOCV) Rippa [1] and Fasshauer [2] :

C(X,Y,c)= σ𝑖=1
𝑛 |𝑦𝑖 − 𝐼 𝑿\𝑥𝑖,𝒀\y𝑖,𝑐 𝑥𝑖 |

The notation 𝑿\𝑥𝑖 refers to removing the ith point from 𝑋. The cost
function 𝐶 effectively returns the sum of the variances created by removing
each of the 𝑛 points from the set of interpolation points in turn and
comparing the resulting interpolant’s value with the value removed from the
interpolation points. Hence Leave One Out Cross Validation.

This cost function is computationally expensive since it requires 𝑛 Toeplitz
matrices be inverted each time the cost function is evaluated for a given value
of 𝑐. However, Rippa [1] devised an optimization to this process, which allows
𝐶 to be evaluated with only a single matrix inversion.

Given a cost function, 𝐶, shape constant determination then becomes a
matter of finding a value of 𝑐 which minimizes 𝐶:

𝑐𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝐴𝑅𝐺𝑀𝐼𝑁𝑐>0
∞ 𝐶(𝑋, 𝑌, 𝑐)

This minimization must typically be performed using numerical methods.

Application to ENO Type Interpolation

To evaluate this method of shape constant determination, we applied it 
to Essentially Non-Oscillatory (ENO) type interpolation.  In this 
application, the first derivative of a data set must be reconstructed, cell 
by cell, by creating a stencil of points for each cell in a way that avoids 
discontinuities.  See Shu [4].    RBF Stability is critical in this application.  
Moreover, we reconstructed a variety of test functions.  For each cell, we  
determined the optimal value of 𝑐 based on the interpolation points of 
that cell’s  ENO stencil.  Each test function was reconstructed at multiple 

resolutions Δ𝑥 = {
2𝜋

40
,
2𝜋

80
,
2𝜋

160
, 
2𝜋

320
, 
2𝜋

640
}.  The 𝐿1 error of the first 

derivative was measured at the right cell boundary for the 
2𝜋

640
resolution 

and compared to Newton Form Polynomial Interpolation and 
Trigonometric Polynomial Interpolation (Christofi [5]).

In addition to the benefit of improved 𝑳𝟏 accuracy, our method does 
not require the use of a 𝒄𝒎𝒊𝒏 value.

We assume that all calculations are carried out to a precision that is accurate to
𝑑 decimal digits. The precision loss is defined as:

𝑃𝐿 𝑤1, 𝑤2 = 𝑓 𝑥 = ൞

0, 𝑤1 = 0 or (𝑤1+𝑤2) = 0

log10
𝑤1

𝑤1 + 𝑤2
, else

Note that this operation is not associative in the sense that 𝑃𝐿 𝑤1, 𝑤2 + 𝑤3 ≠
𝑃𝐿 𝑤1 + 𝑤2, 𝑤3 . Assuming we have an ordered list of terms 𝑊 =
𝑤1, 𝑤2, … , 𝑤𝑛 , we can apply this operator to sets of terms in the following

manner:

𝑃𝐿 𝑊 = 

𝑖=1

𝑛−1

𝑃𝐿 

𝑗=1

𝑖

𝑤𝑗 , 𝑤𝑖+1

This measures the number of digits of precision lost when a set of terms are
added. For example:

𝑃𝐿 1000,−1000.2, . 1 = 4
We can apply this to the terms of an interpolant 𝐼[𝑋,𝑌,𝑐](x)

𝑊 = 𝑎1𝜙 | Ԧ𝑥 − 𝑥1|, 𝑐 , … a𝑛𝜙 | Ԧ𝑥 − 𝑥𝑛|, 𝑐
If 𝑃𝐿 𝑊 > 𝑑/𝑚 where 𝑑 is the working precision and 𝑚 a precision margin,
then we can infer that the interpolant is using more than the available working
precision for that value of 𝑐 for that stencil.

Conclusion and Remarks
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Function Name

𝜙(𝑟) = 𝑒−𝑐
2𝑟2 Gaussian

𝜙(𝑟) = 𝑐2 +𝑟2 multi-quadric

𝜙(𝑟) =
1

𝑐2 + 𝑟2
Inverse multi-quadric

Both interpolants pass through the sampled points, but are very different 
functions

Whenever two finite precision numbers are added or subtracted there is a
potential for precision loss. This occurs when the significant digits of one
addend cancel the significant digits of another addend leaving fewer
significant digits in the result. RBF Interpolants can exhibit this problem even
when high precision arithmetic is used. To illustrate this, we took a single set
of interpolation points built from the test function sin7 𝑥 near 𝜋 of five

points evenly spaced by
2𝜋

640
. This is a place where the function is relatively

flat. We created three different Gaussian interpolants at 𝑐 = 8 × 10−7 , 𝑐 =
8 × 10−6 , and 𝑐 = 8 × 10−5 . Rather than adding the terms of the
interpolant together we evaluate and display the terms below:

In the neighborhood of 𝜋, this interpolant ought to have a value close to zero.
The terms of the interpolant have wildly varying magnitudes, which must
cancel to produce a value near zero. When 𝑐 = 8 × 10−7 this stencil will
require at least 54 digits of precision. This demonstrates that some stencils
and values of 𝑐 require more digits of precision. All values of 𝑐 are valid, but
not all values are available for all stencils if precision is limited.
When searching for a minimum of the cost function, there must be a way to
determine what values of 𝑐 will work for the available precision.

Determination of 𝒄𝒎𝒊𝒏 using Matrix 

Condition Number

To minimize the cost function 𝐶 numerically, it is necessary to determine the
range of values [𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥] where catastrophic precision loss will not occur.

Rippa [1] suggests that the matrix condition number must satisfy:

𝜅 𝑀𝑐 =
𝜆𝑚𝑎𝑥(𝐴)

𝜆𝑚𝑖𝑛(𝐴)
<

1

10𝑑
Where 𝑑 is the number of decimal digits of precision being used. This might
account for the ill-conditioning caused by the coefficients, 𝑎𝑖, but does not
account for the contribution of the basis functions themselves.

Mongillo [3] suggests that the matrix condition number for Gaussian basis
functions must satisfy:

𝜅 𝑀𝑐 ≤
2𝑐𝑛𝑞𝑥 ⋅ 𝑒

40.71/ 𝑞𝑥𝑐
2

√𝜋
Where 𝑛 is the number of points and 𝑞𝑥 is the minimum spacing. However,
Mongillo also states that the resulting bound is, in fact, not practical.

Logarithmic Descent 

One way to make use of the precision loss metric to guide shape constant
determination is Logarithmic Descent. The idea is to step logarithmically from
a high value of 𝑐 to successively lower values of 𝑐 until the interpolant has used
up the available precision. For each value of 𝑐, the cost function is evaluated
and the value of 𝑐 that minimizes the cost function is used:

level=0; done=false; min_cost = Inf; min_c = 0;
For level = 0 to -100 while (not done)

For step = 10 to 2 while (not done)
𝑐 = (𝑠𝑡𝑒𝑝 − 1)10−𝑙𝑒𝑣𝑒𝑙;
<Build interpolant for stencil with shape constant, c>
<Evaluate terms of interpolant and precision loss>
If (precision loss>working precision(d)/margin(m))

done=true
else

If (Cost(Interpolant)<min_cost)
min_cost=cost;
min_c=c;

end
end

This method of search eliminates the need to set a minimum value of 𝑐 apriori.
Instead, the search cuts off when the precision is exhausted.

Test Function 𝑳𝟏 Error

Polynomial Trigonometric Gaussian RBF
𝒄s w/ New Method

𝑠𝑖𝑛7(𝑥) 1.06E-08 9.05E-09 7.22E-09

𝑠𝑖𝑛(𝑥2) 1.49E-06 1.42E-06 1.29E-06

𝑥 ⋅ 𝑠𝑖𝑛 4𝑥 1.01E-07 7.26E-08 2.78E-08

1 − .9cos(𝑥) −
1
2 1.47E-08 1.41E-08 1.38E-08

To visualize this process, we plot a test function y=sin7(𝑥), and the value of the
shape constant for each cell of a 640-cell ENO reconstruction as well as the
precision loss of the interpolant for each such cell.

Test Function in yellow and its 
approximated derivative in green.  

Determined Shape Parameter
The log of the shape parameter
chosen for each of the 640 stencils is
displayed. LOOCV was used in
conjunction with logarithmic descent
to choose 𝑐. Without the precision
loss metric, an artificial lower bound
would be needed

Precision Loss
This plot shows the precision loss of
the interpolant at the chosen value
of 𝑐 . Note that only some cells
require high precision. The loss of
the interpolant is given in blue while
the loss of the first derivative of the
interpolant is given in yellow.

Scattered Surface Interpolation e.g.
We also used RBF Interpolation to interpolate a test function in ℝ2 → ℝ.

We interpolated using 𝑛 = 49 and
𝑛 = 169 points. In both cases the
precision loss metric method was used
to limit the values of 𝑐 considered. For
𝑛 = 49 logarithmic descent was cut
off at 𝑐 = .20 and the value chosen
was 𝑐 = .70 For 𝑛 = 169 points the
cut off was 𝑐 = .70 and the value of
𝑐 = .90 was chosen.

𝑛 = 169, 𝑐 = .90

We propose and test a precision loss metric to dynamically determine the
optimal value of 𝑐 in RBF interpolants and apply it in the difficult setting of
ENO type interpolation. Further work is needed to develop a full ENO-type
scheme for numerical solution of hyperbolic conservation laws that exhibit
discontinuities.

Shape 
Parameter

Terms of Interpolant

𝒂𝟎𝝓(|𝒙 − 𝒙𝟎|,c) 𝒂𝟏𝝓(|𝒙 − 𝒙𝟏|,c) 𝒂𝟐𝝓(|𝒙 − 𝒙𝟐|,c) 𝒂𝟑𝝓(|𝒙 − 𝒙𝟑|,c) 𝒂𝟒𝝓(|𝒙 − 𝒙𝟒|,c)

𝑐 = 8 × 10−7 9.61 × 1054 −3.84 × 1055 5.77 × 1055 −3.84 × 1055 9.61 × 1054

𝑐 = 8 × 10−6 9.61 × 1046 −3.84 × 1047 5.77 × 1047 −3.84 × 1047 9.61 × 1046

𝑐 = 8 × 10−5 9.61 × 1038 −3.84 × 1039 5.77 × 1039 −3.84 × 1039 9.61 × 1038

Order of Accuracy
This plot shows the ln 𝐿1
Error for each stencil 
reconstructed at each 
resolution.  For 𝑛 = 5
points in the stencil of each 
cell,  RBF interpolation 
maintains consistent and 
correct order 4 accuracy at 
all resolutions.


